MTH 605: Topology I Assignment 1

1 Problems for practice

1.1 Topological spaces and closed sets

- (1) Show that the topologies \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not compatible.
- (2) Describe a subbasis for the standard topology on \mathbb{R} that is not a basis.
- (3) Show that each of following collections define basis for a topology on X. Describe the topology generated in each case.
 - (a) $\mathcal{B} = \{(a, b) \mid a < b, a \text{ and } b \text{ rational}\}, X = \mathbb{R}.$
 - (b) $\mathcal{C} = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}, X = \mathbb{R}.$
 - (c) $\mathcal{D} = \{(a, b) \times (c, d) \mid a < b, c < d, a, b, c \text{ and } d \text{ rational}\}, X = \mathbb{R}^2.$
- (4) If A, B, and A_{α} are subsets of a space X. Determine whether the following statements hold. Prove them if they are true, and give a counterexample if they are false.
 - (a) If $A \subset B$, then $\overline{A} \subset \overline{B}$.
 - (b) $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
 - (c) $\overline{\cup A_{\alpha}} \supset \cup \overline{A_{\alpha}}$.
 - (d) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 - (e) $\overline{\cap A_{\alpha}} = \cap \overline{A_{\alpha}}$.
 - (f) $\overline{A-B} = \overline{A} \overline{B}$.
- (5) If $A \subset X$, we define the boundary of A (denoted by ∂A) by $\partial A = \overline{A} \cap \overline{(X-A)}$. Show the following.
 - (a) $A^{\circ} \cap \partial A = \emptyset$ and $\overline{A} = A^{\circ} \cup \partial A$.

- (b) $\partial A = \emptyset$ if and only is A is both open and closed.
- (c) U is open if and only if $\partial U = \overline{U} U$.
- (6) Find the ∂A and A° , if A is one of the following subsets of \mathbb{R}^2 .
 - (a) $A = \mathbb{Q} \times \mathbb{R}$.
 - (b) $A = \{(x, y) \mid 0 < x^2 y^2 \le 1\}.$
 - (c) $A = \{(x, y) | x \neq 0 \text{ and } y = 1/x\}.$

1.2 Continuous functions, metric spaces, and product topology

- (1) Show that for a function $f : \mathbb{R} \to \mathbb{R}$, the $\epsilon \delta$ definition of continuity is equivalent to the open set definition.
- (2) An indexed family of sets $\{A_{\alpha}\}$ is said to be *locally finite* if each point x of X has a neighborhood that intersects A_{α} for only finitely many values of α . Let $\{A_{\alpha}\}$ be a locally finite collection of closed subsets of X such that $X = \bigcup A_{\alpha}$. Show that if $f|_{A_{\alpha}}$ is continuous for each α , then f is continuous.
- (3) If (X, d) is a metric space, then the topology induced by d is the coarsest topology relative to which the function d is continuous.
- (4) Let $A \subset X$, and let $f : A \to Y$ be a continuous map of A into a Hausdorff space Y. Show that if f may be extended to a continuous function $g : \overline{A} \to Y$, then g is uniquely determined by f.
- (5) Prove that an uncountable product of \mathbb{R} with itself is not metrizable.
- (6) Given $p \ge 1$, define

$$d(x,y) = \left[\sum_{i=1}^{n} |x_i - y_i|^p\right]^{1/p},$$

for $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$. Show that d is a metric that induces the standard topology on \mathbb{R}^n .

- (7) Let \mathbb{R}_0 be the subset of \mathbb{R}^∞ consisting of sequences in \mathbb{R} that are eventually 0. Find the closure of \mathbb{R}_0 in \mathbb{R}^∞ under the product and box topologies.
- (8) Define a map $h : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ that is linear in each coordinate. Is h continuous under the product and box topologies?

1.3 Quotient spaces, topological groups, and connectedness

- (1) If $A \subset X$, a retraction of X onto A is a continuous map $r : X \to A$ such that r(a) = a for each $a \in A$. Show that a retraction is a quotient map.
- (2) Define an equivalence relation ~ on \mathbb{R}^2 as follows: $(x_0, y_0) \sim (x_0, y_0)$ if $x_0 + y_0^2 = x_1 + y_1^2$. Describe the corresponding quotient space X^* .
- (3) A topological group is a group (G, \cdot) that is also a topological space satisfying the T_1 axiom, such that the group operation $(g, h) \mapsto g \cdot h$ and the map $g \mapsto g^{-1}$ are both continuous maps. Show that $(\mathbb{R}, +)$, $\operatorname{GL}(n)$, and S^1 (seen as a subset of \mathbb{C}) are topological groups.
- (4) Let G be a topological group, and let H be a subspace and a subgroup of G.
 - (a) Show that both H and \overline{H} are topological groups.
 - (b) Give G/H the quotient topology using the lest cosets as partitions. Show that if H is closed in G, then the singletons are closed in G/H.
 - (c) Show that $G \to G/H$ is open.
 - (d) Show that if H is closed and $H \leq G$, then G/H is a topological group.
 - (e) Using (d), show that \mathbb{R}/\mathbb{Z} is a topological group. Describe this space.
- (5) If τ and τ' be two topologies on X such that $\tau \subset \tau'$. What does the connected of X in one topology imply in the other?
- (6) A space is *totally disconnected* if its only connected subsets are the onepoint sets. Show that if X has the discrete topology, then X is totally disconnected.
- (7) Determine whether the following spaces are connected.
 - (a) An infinite set with the cofinite topology.
 - (b) \mathbb{R}_{ℓ} .
- (8) Let $p : X \to Y$ is a quotient map each of whose fibers are connected. Show that X is connected, whenever Y is connected.
- (9) Using connectedness, establish the following facts.

- (a) (0,1), (0,1], and [0,1] are not homeomorphic.
- (b) \mathbb{R}^n and \mathbb{R} are not homeomorphic for n > 1.
- (10) Show that if $f : [0,1] \to [0,1]$ is a continuous map, then f has a fixed point.
- (11) A space X is weakly locally connected at x if for every neighborhood U of x, there is a connected subspace of X contained in U that contains a neighborhood of x. Show that if X is weakly locally connected at every point, then X is locally connected.
- (12) Describe the components and path components of the following spaces.
 - (a) \mathbb{R}_{ℓ}
 - (b) \mathbb{R}^{∞} with product and box topologies

1.4 Compactness, Hausdorff spaces, and one-point compactification

- (1) Show that X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) | x \in X\}$ is closed in $X \times X$.
- (2) Show that every compact subspace of a metric space is closed and bounded. Find a metric space in which the converse does not hold.
- (3) Show that if X is compact Hausdorff under two topologies τ and τ' , then either $\tau = \tau'$ or they are incomparable.
- (4) Let Y be a compact space.
 - (a) Show that $\pi_1 : X \times Y \to X$ is a closed map.
 - (b) Let Y be a Hausdorff space, and let $f : X \to Y$. Then f is continuous if and only if the the graph of $f, G_f = \{(x, f(x)) | x \in X\}$ is closed in $X \times Y$.
- (5) Show that a connected space having more than one point is uncountable.
- (6) Let $p : X \to Y$ be a surjective continuous map each of whose fibers is compact. Show that if Y is compact, then X is compact.
- (7) Let X be a compact Hausdorff space. Let \mathcal{B} be a collection of closed connected subsets that are simply ordered under inclusion. Then show that $\bigcap_{a \in \mathcal{A}} A$ is connected.

- (8) Establish the following facts.
 - (a) [0,1] is not compact in \mathbb{R}_K .
 - (b) \mathbb{R}_K is connected, but not path connected
 - (c) [0,1] is not limit point compact in \mathbb{R}_{ℓ} .
 - (d) Every subset of \mathbb{R} under the cofinite topology is compact.
 - (e) \mathbb{Q} is not locally compact.
- (9) A space X is countably compact if every countable covering of X has a finite subcovering. Show that in a T_1 space X, countable compactness is equivalent to limit point compactness. [Hint: If not finite subcollection of U_n covers X, then choose $x_n \notin U_1 \cup \ldots \cup U_n$ for each n.]
- (10) Let (X, d) be a compact metric space. Show that every isometry on X is a homeomorphism.
- (11) Let G be a topological group.
 - (a) Show that if C is a component of G containing the identity element, then $C \leq G$.
 - (b) If G is locally compact and $H \leq G$, then G/H is locally compact.
- (12) Show that a homeomorphism of locally compact Hausdorff spaces extends to their one-point compactification.
- (13) Describe the one-point compactification of the following spaces.
 - (a) \mathbb{R}
 - (b) **Z**₊
 - (c) \mathbb{R}^n
- (14) If $f, g: X \to Y$ be continuous maps and Y is Hausdorff, then show that the set $\{x \in X : f(x) = g(x)\}$ is closed in X.

2 Problems for submission

(Due 8/2/24)

• Solve problems 1.2 (6), 1.3 (10), 1.4 (4), and 1.4 (11) from the practice problems above.