
MTH 605: Topology I
Assignment 1

1 Problems for practice

1.1 Topological spaces and closed sets

(1) Show that the topologies R` and RK are not compatible.

(2) Describe a subbasis for the standard topology on R that is not a basis.

(3) Show that each of following collections define basis for a topology on X.
Describe the topology generated in each case.

(a) B = {(a, b) | a < b, a and b rational}, X = R.

(b) C = {[a, b) | a < b, a and b rational}, X = R.

(c) D = {(a, b)× (c, d) | a < b, c < d, a, b, c and d rational}, X = R2.

(4) If A, B, and Aα are subsets of a space X. Determine whether the fol-
lowing statements hold. Prove them if they are true, and give a coun-
terexample if they are false.

(a) If A ⊂ B, then A ⊂ B.

(b) A ∪B = A ∪B.

(c) ∪Aα ⊃ ∪Aα.

(d) A ∩B = A ∩B.

(e) ∩Aα = ∩Aα.

(f) A−B = A−B.

(5) If A ⊂ X, we define the boundary of A (denoted by ∂A) by ∂A =
A ∩ (X − A). Show the following.

(a) A◦ ∩ ∂A = ∅ and A = A◦ ∪ ∂A.
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(b) ∂A = ∅ if and only is A is both open and closed.

(c) U is open if and only if ∂U = U − U .

(6) Find the ∂A and A◦, if A is one of the following subsets of R2.

(a) A = Q× R.

(b) A = {(x, y) | 0 < x2 − y2 ≤ 1}.
(c) A = {(x, y) |x 6= 0 and y = 1/x}.

1.2 Continuous functions, metric spaces, and product
topology

(1) Show that for a function f : R→ R, the ε− δ definition of continuity is
equivalent to the open set definition.

(2) An indexed family of sets {Aα} is said to be locally finite if each point x
of X has a neighborhood that intersects Aα for only finitely many values
of α. Let {Aα} be a locally finite collection of closed subsets of X such
that X = ∪Aα. Show that if f |Aα is continuous for each α, then f is
continuous.

(3) If (X, d) is a metric space, then the topology induced by d is the coarsest
topology relative to which the function d is continuous.

(4) Let A ⊂ X, and let f : A → Y be a continuous map of A into a
Hausdorff space Y . Show that if f may be extended to a continuous
function g : Ā→ Y , then g is uniquely determined by f .

(5) Prove that an uncountable product of R with itself is not metrizable.

(6) Given p ≥ 1, define

d(x, y) =

[
n∑
i=1

|xi − yi|p
]1/p

,

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Show that d is a metric that
induces the standard topology on Rn.

(7) Let R0 be the subset of R∞ consisting of sequences in R that are even-
tually 0. Find the closure of R0 in R∞ under the product and box
topologies.

(8) Define a map h : R∞ → R∞ that is linear in each coordinate. Is h
continuous under the product and box topologies?
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1.3 Quotient spaces, topological groups, and connect-
edness

(1) If A ⊂ X, a retraction of X onto A is a continuous map r : X → A such
that r(a) = a for each a ∈ A. Show that a retraction is a quotient map.

(2) Define an equivalence relation ∼ on R2 as follows: (x0, y0) ∼ (x0, y0) if
x0 + y0

2 = x1 + y1
2. Describe the corresponding quotient space X∗.

(3) A topological group is a group (G, ·) that is also a topological space
satisying the T1 axiom, such that the group operation (g, h) 7→ g · h and
the map g 7→ g−1 are both continuous maps. Show that (R,+), GL(n),
and S1 (seen as a subset of C) are topological groups.

(4) Let G be a topological group, and let H be a subspace and a subgroup
of G.

(a) Show that both H and H̄ are topological groups.

(b) Give G/H the quotient topology using the lest cosets as partitions.
Show that if H is closed in G, then the singletons are closed in G/H.

(c) Show that G→ G/H is open.

(d) Show that if H is closed and H E G, then G/H is a topological
group.

(e) Using (d), show that R/Z is a topological group. Describe this
space.

(5) If τ and τ ′ be two topologies on X such that τ ⊂ τ ′. What does the
connected of X in one topology imply in the other?

(6) A space is totally disconnected if its only connected subsets are the one-
point sets. Show that if X has the discrete topology, then X is totally
disconnected.

(7) Determine whether the following spaces are connected.

(a) An infinite set with the cofinite topology.

(b) R`.

(8) Let p : X → Y is a quotient map each of whose fibers are connected.
Show that X is connected, whenever Y is connected.

(9) Using connectedness, establish the following facts.
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(a) (0, 1), (0, 1], and [0, 1] are not homeomorphic.

(b) Rn and R are not homeomorphic for n > 1.

(10) Show that if f : [0, 1] → [0, 1] is a continuous map, then f has a fixed
point.

(11) A space X is weakly locally connected at x if for every neighborhood U
of x, there is a connected subspace of X contained in U that contains a
neighborhood of x. Show that if X is weakly locally connected at every
point, then X is locally connected.

(12) Describe the components and path components of the following spaces.

(a) R`

(b) R∞ with product and box topologies

1.4 Compactness, Hausdorff spaces, and one-point com-
pactification

(1) Show that X is Hausdorff if and only if the diagonal ∆ = {(x, x) |x ∈ X}
is closed in X ×X.

(2) Show that every compact subspace of a metric space is closed and bounded.
Find a metric space in which the converse does not hold.

(3) Show that if X is compact Hausdorff under two topologies τ and τ ′, then
either τ = τ ′ or they are incomparable.

(4) Let Y be a compact space.

(a) Show that π1 : X × Y → X is a closed map.

(b) Let Y be a Hausdorff space, and let f : X → Y . Then f is
continuous if and only if the the graph of f , Gf = {(x, f(x)) |x ∈ X}
is closed in X × Y .

(5) Show that a connected space having more than one point is uncountable.

(6) Let p : X → Y be a surjective continuous map each of whose fibers is
compact. Show that if Y is compact, then X is compact.

(7) Let X be a compact Hausdorff space. Let B be a collection of closed
connected subsets that are simply ordered under inclusion. Then show
that ∩a∈AA is connected.
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(8) Establish the following facts.

(a) [0, 1] is not compact in RK .

(b) RK is connected, but not path connected

(c) [0, 1] is not limit point compact in R`.

(d) Every subset of R under the cofinite topology is compact.

(e) Q is not locally compact.

(9) A space X is countably compact if every countable covering of X has a
finite subcovering. Show that in a T1 space X, countable compactness is
equivalent to limit point compactness. [Hint: If not finite subcollection
of Un covers X, then choose xn /∈ U1 ∪ . . . ∪ Un for each n.]

(10) Let (X, d) be a compact metric space. Show that every isometry on X
is a homeomorphism.

(11) Let G be a topological group.

(a) Show that if C is a component of G containing the identity element,
then C E G.

(b) If G is locally compact and H ≤ G, then G/H is locally compact.

(12) Show that a homeomorphism of locally compact Hausdorff spaces extends
to their one-point compactification.

(13) Describe the one-point compactification of the following spaces.

(a) R
(b) Z+

(c) Rn

(14) If f, g : X → Y be continuous maps and Y is Hausdorff, then show that
the set {x ∈ X : f(x) = g(x)} is closed in X.

2 Problems for submission

(Due 8/2/24)

• Solve problems 1.2 (6), 1.3 (10), 1.4 (4), and 1.4 (11) from the practice
problems above.
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